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Effective way to sum over long-range Coulomb potentials in two and three dimensions
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| propose a method to calculate the logarithmic interaction in two dimensions and the Coulomb interaction
in three dimensions under periodic boundary conditions. This paper considers the case of a rectangular cell in
two dimensions and an orthorhombic cell in three dimensions. Unlike the Ewald method, there is no parameter
to be optimized, nor does the method involve error functions, thus leading to the accuracy obtained. This
method is similar in approach to that of Spéol. Simul. 22, 199(1999)], but the derivation is considerably
simpler and physically appealing. An important aspect of the proposed method is the faster convergence of the
Green’s function for a particular case as compared to Sperb’s work. The convergence of the sums for most
parts of the unit cell is exponential, and hence requires the calculation of only a few dozen terms. In a very
simple way, we also obtain expressions for the interaction for systems with slab geometries. Expressions for
the Madelung constants of CsCl and NaCl are also obtained.
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I. INTRODUCTION rithmic interaction in two dimension@D) and Coulomb in-
) teraction in three dimensions. The 2D case has been satisfac-
~In molecular dynamicsMD) and Monte Carlo(MC)  {qyily dealt with in Ref.[2]. Thus mainly we will concentrate
simulations one is required to calculate the potential energyn, 3p results. The Ewald method is the most widely used
and forces acting on a particle due to other particles. Som%chnique for system in 3D. An alternative technique for
times such forces have a long-range interaction. In such situs, mmation over long-range forces in 3D for a cubic unit cell
ations, periO(_jic boundary conditions are.usuallly imposed iRy a5 given by Leknef3]. A tedious method was employed to
order to avoid the boundary effects, which might be espeqpiained the self-energy part of the interaction. However,
cially prominent for small systems that are usually employeq oxner generalized his work to an orthorhombic ¢é]land
in MD simulations. Under periodic boundary conditions in- 5pisined self-energies in a much simpler manner. These re-
teraction of a particle with another particle includes the di-cent methods by LekngB] and Sperli5] are similar in spirit
rect interaction plus an interaction of the first particle with all ;5 t their derivation involves complicated algebra. One prob-
replicas of itself as well as all replicas of the second particle|gm with Lekner’s expressions is that they involve a triple
These replicas come into the picture due to the periodic repsym sperb'gs] results are better in that part of the interac-
etitions of a charge under the periodic boundary conditionsyg, has only a double sum. Nevertheless a triple §Hxs.
The energy contribution arising from the interaction of a Par(2 4y and (2.7) in Ref. [5]] is still employed for the case
ticle with its own replicas is termed the self-energy. Thehen both particles are very close to each other.
calculation of self-energy is important in a MC simulation,  The technique that we propose is based on a series sum-
where the size of the box might change during simulationmation in Fourier space. Work along these lines has been
such as in_isobaric MC calculations. The natural q‘JeStiO'breviously reported in recent papés7], as well as by Har-
that arises is how one may compute the long-range interagyg et gJ. [8], Sperb{5], Crandallet al. [9], and Marshal[10].
tion of a particle with a second particle along with all the The outline of this paper follows. In Sec. Il, we derive a
replicas of the second particle. The self-energy part may thegeneral formula for dimensiod= 2. In Sec. Ill the formula
be obtained trivially as well. For 80 years, researchers havg applied to get the logarithmic sum in 2D. Section IV de-
employed the Ewald sum techniq{f to perform such sum-  g¢rihes application of the general formula to get the Coulomb
mations. However, the Ewald sum technique has certaig,mmation 1 for the slab geometry case as well as for 3D
drawbacks. The primary drawback is the optimization of a:ase. Section V considers evaluation of Madelung constants

parameter that renders breakup of the original algebraic sufy csc| and NaCl. Finally, we discuss our results in Sec. V.
into two parts, one in real space and the other one in Fourier

space. Only when this parameter is chosen properly do the
sums in the real and Fourier spaces converge fast. A second Il. COULOMB SUM IN  d DIMENSION
problem with the Ewald sum is that even if one achieves An interaction that satisfies the Poisson equatiod ii-

optimal choice of the parameter for breaking up the sum, ong, o hqjons will be termed a Coulomb type potential for that

.m'th lose n?me?cal accr:]uracy a? tht? tetrmshm ;h(;ase SUMSarticular dimension. For example, the logarithmic interac-
INVOIVE error functions, whose evaluation to a high degree o, 5 5 Coulomb type interaction in 2D. In this section we

accuracy is difficult. In this paper we will consider the loga- discuss how one can calculate a pairwise Coulomb interac-

tion between two particles, separated by a displacement
For simplicity, we consider the case of a unit charge situated
*Electronic address: satst27@pitt.edu within an orthorhombic cell ird dimensions. Let the sides
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of the unit cell be labeled b, I, ...,l4 The basic unit cell ' N

repeats itself in ald dimensions. The unit charge interacts E= >, >,

with other identical unit chargedor the case of different {mlg i.j=1

chargesy; andq, one just gets an extra factor qfq,) situ- 0iq

ated at the vertices of the periodic structure. The interactionX ~ > - 2. . . N[22

between two particles is given by the Green’s functiordin {maly =g )%+ (malp = ry )74+ -+ (Melg =g o))

dimension,G(r), which satisfies the Poisson equation (2.3

5 wherer;;  stands for the th&th component of vectar; and

VeG(r) = _Cdz ar +1). (2.)  {m}, stands for a set af numbersmy,my, ...,my. The sum-

mation over eaclm; runs from -c to 400, The prime on the
summation sign indicates that when il are zero, the term
Porresponding té=j is not to be included.

The solution to Eq(2.1) can be formally expressed in
Fourier space,

where V2 is the Laplacian operator id dimensions,| de-
notes ad-dimensional vector, whose components are intege
multiples ofl;’s, andCy is specified by

C Bz ford= 2, G( ) d 1
= X1, X0y s Xg) = 5
97| (d-2)By ford> 2, LT 221,y
whereB, stands for the coefficient of tHel-1)-dimensional % 2 eZmmea/lormagat ety
surface element inl dimensions, g LMy + (Mpf1)2 4 -+ + (myll )%}
d(w)dlz (24)
TR+ 22 here 0<x;/l;<1. The functionG(X;,Xs, ..., Xg), as defined

above, diverges since the term corresponding tonallbeing
HereI'(x) stands for the gamma function. ThBs=27, B;  equal to zero blows up. This is expected since the sum de-
=4, etc. We note that the coefficients in Eg.1) have been fined in Eq.(2.4) has a contribution coming from an infinite
chosen such thds(r) stands for a Coulomb type summation set of identical charges, i.e., the unit cell is not charge neu-
in d dimensions. For example, if we considlr charges tral. For the sum in Eq(2.4) to make sense we add an in-
0,0, ---,qn in @ neutral unit cell then fod > 2, we will have  finitesimal term to the denominator and subtract off a coun-

a total energy of the systefa given by terterm from the whole sum as follows:
|
Cd 1 . e| 2a(MyXq/l+MoXof 1 o+ - +mgxg/l ) 1
G(Xq,Xo, ..., Xg) = |m(2 - , (2.5
PR a2 1l lgemo\ g {Maf1 )2 + (Mpll)2 4 -+ + (mgllg)? + (&)%) (¢/19?

where ¢ is an infinitesimal parameter which tends to zero. ) Cq

The prescription employed above amounts to assumption of VG(r) = ‘Cdz ar +1) + Lleee ] (2.6)

the presence of a uniform background charge. For example, ! re d

let us consider the case of 3D. For every chaggene may  where the last term in E@2.6) represents the uniform back-
imagine a uniform distribution of charge, such that the totalground charge. The complete expression for the potential has
charge per unit cell adds up tog—For a charge neutral & term arising from surface contribution. For the 2D case this
periodic system, imposing these kinds of background unifurns out to be zero, but for 3D one obtains a contribution
form charge distributions does not matter since the total unifrom a dipole term{11]. _

form background charge adds up to zero. However, now a_Moving further, we can perform one of thiesums in Eq.

unit charge located within the unit cell at position, x,,x;)  (2-2) analytically[12],

not only interacts with a second charge located at the origimy(x4,{m}, &)
and its periodic images, but also interacts with the neutraliz- "
ing background charge, compensating the charge of the sec- _ D
ond particle. This particular way of introducing the neutral- e (M) + (Mylg )2+ -+ + (Mg glg g )+ &

izing background charge leads to only the intrinsic pa}f

the potential energy. Now, it can be easily verified that Eq.  _ 7 coshmy({m},§)(1 - 2xg|/lg)] 2.7
(2.5) satisfies the following equation: oy, 9 sinH wyg({m}, §)] ’ '

ei ZﬂdeXd” d
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wherel; ; stands for;/1; and y4({m}, ¢) is defined as

YoM}, &) = V(mylg D2+ -+ + (Myoalgg-D)?+ €. (2.9)
For convenience we also define

Yao{mb, &) = V(mylg )2+ -+ + (Mgoalgg-1)%.
Using Eqgs.(2.5 and(2.7) one obtains

(2.9

Cq g
G(xl,xz,...,xd)—(zw Iy lys
><Iim< > g(xe{m}, &)
-0\ {m)y_y

(d-1)

x T1 cos<2wm|)|() é) (2.10

i=1

In the limit §— 0, the term corresponding to ailt being set
to zero in Eq.(2.10 must be separated out as follows:

G(Xq,X2, ..., Xq)
_ Gy lg
T M2l g
(d-1)
[ > 9xg{m} &) H COS(Zrm.I )}
{mig-q &0
Cq lg ™ Xl 2
T 2mill, g, 3 {1 6( |d) G(E) } 213

where the prime on the summation sign implies that the ter
corresponding to alin, being zero is not to be included. In
Eq. (2.11), we separated out the term corresponding torall
being set to zero and took the limjt— 0 as follows:

1

"m(zcosfiwé(l = 2xdlg)] _ )
g0\ & sini m¢] &
)

S

3 lg
Equation(2.11) forms the main result derived in this section.

X4
lg

(2.12
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expressions fo6,p(r) andG2Y in this section. The pairwise
interaction is given by the Green’s functidd,p(r) which
satisfies the Poisson equation in 2D,
V2G,p(r) = - 2772 Sr+1)+ W (3.2
1'2

where the last term on the right-hand s{@&HS) of Eq. (3.2
stands for the neutralizing background charge. Equ&8dh

is a special case of E¢2.1). We look for a solution of Eq.
(3.2) with periodic boundary conditions along tl¢ andx,
directions. This solution can be easily obtained from the gen-
eral formula Eq(2.11) derived in the previous section,

11 T
Gop(X1,%p) = —2

2mly m’ Y20(M)

cosh myo(m)(1 = 2x,//1,)] S( ﬁ)
T sinmygm] oA,

1l ﬂz{l 6(|x2|> 6(%)2} (3.3

27T|1 |2
where the prime om implies that the term corresponding to
m=0 is to be excluded. Without any loss of generality we
may assume that sides of the rhombic cells have been labeled
so thatl;<I,. This condition will make sure thag,y(m)>1
for all integer values om. Let us now consider the conver-
gence of the sum in Eq3.3). The first part of Eq.(3.3)
converges exponentially, but in some cases the convergence
may be very slow. Specifically, the leading term in E8;.3)

flecays as exXp2m|m||x,|/11). Thus the convergence depends

on the ratiox,/l,. We see that one obtains a slow exponential
convergence when$€x,/1;<0.1. To handle this case prop-
erly, we break the first sum in E@3.3) into two parts by
application of a trigonometric identity,

cosiia-b) cosha)exp(—b)
sinh(b) sinh(b)
This leads to the expression
1

+exp—a).

o)
coyq 2mm—
Iy

(3.9

lCOSﬂWm|2,1(1 - 2|X2|/|2)]

It is important to note that as a result of the symmetry T m sint(aiml, )
resent in the problem, it suffices to look at only that part of o
Fhe unit cell wﬁich corresponds to<0x;/1;<0.5 f)(/)r all ips. _1g mexp= 7T|m|'2:DCOS|in|z,1(2X2/|z)]
Hence, from here on we will assume<;/l;<0.5. In the Tm=1 M sinh(zrml, 1)
next two sections, we investigate two important cases corre- o
sponding tod=2 andd=3. ><cos<277mx—1> + 12 m
|1 Tm=1 m

IIl. LOGARITHMIC SUM IN TWO DIMENSIONS

The energy oiN particles contained in a rectangular unit

%l

X1
><exp< 2mm— )05(27rm|—>.
1

(3.5
1

cell with periodic boundaries and interacting through a loga-

rithmic potential in 2D can be expressed[8%

E qi QJGZD(rI I ) + E q|steIf'

iJ#]

Etotal (3. 1)

2

where the charges are denoteddpyand the position of the
charges in the unit cell by, where 1=<i=<N. We will obtain

We notice that the first part of E@3.5 converges even for
the case when €x,/1;,<0.1. In fact the slowest conver-
gence for the first part will now occur for the case when
2X,=I,. But even this “slowest” convergence amounts to a
very rapid exponential convergence of éxp|m|l,/1,). We
have yet to account for the last sum in E8§.5). Using the
identity
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oo

1 1 G3p(X1,X2,X3)
> Eexp(— 2nmx)cog2mny) = - §|n[COS|’(27TX) - cog2my)]

!

] 15 7 costmyso{mh)(1 = 2/xgl/15)]
In(2) 7T|1|2m1 m, Yaol{m}) sinl{7yso({m})]
+ax—-——, x>0, (3.6 )
2 E( ) I8 w{ <|x3|> ()}
x]] cod 2mm= | + 1-6 6l = ¢,
the last part of the sum in E@3.5) may be explicitly evalu- i=1 i/ 123 3 3
ated to (4.2)
1 o) _ %1 Pl _In2) h
—zln{cosl'<21-rll) co<2wll)}+w N 5 where
@7 Yaol (M}, &) = V(myl )2+ (Myl3 ). (4.3

Assembling the terms together, we finally obtain the follow-

ing expression for the 2D Green’s function: Without any loss of generality we assume that the axes have

been labeled such that

G o
20(X1, %) = Py |m| l3=1,=14. (4.9
exp(— am|l,/l,)cosh2ammx/I 4] Xq The condition in Eq(4.4) makes sure thag;o({m})>1 for
sinh(armll,/1,) 2 m_l all sets{m}. Equation(4.2) is one of our main results for the
3D case. We note that the potential energy obtained consists
_ lln{cosk(2w2> _ S(zwﬁ)} of only the intrinsic par{3]. A dipole contribution will have
2 Iy Iy to be included in Eq(4.2) to obtain the real potential energy
2 [3,11]. This dipole contribution is represented by the last
+ﬁ{1 (XZ) } In(2). (3.89 term on the RHS in Eq(4.1). We notice that the sum
6l; P 2 in Eq. (4.2) converges exponentially. In fact the terms corre-
sponding to large |my| and |m,| decay as exp
The self-energy may be easily obtained as X[=27rx3\/(My/17)%+ (my/1,)?], which with the assumption in
_ Eq. (4.4 means that terms decay faster than exp
Gior=  lim  {Gop(xq,%o) + IN(VXF +x5)} X[=27xgy(my/1,)2+(my/1,)2]. Thus the convergence de-
0a.x9) (0.0 pends upon the ratiog,=xs/l,. For rz,>0.1, the conver-
1 a exp(— a|m|l,/l,) 2w\ 1wl gence of the series in E¢4.2) is extremely good. However,
=ZTm, || sinh(amilz/ly) -l AR the convergence slows down for the case wign<0.1.

This problem may be solved as follows. Applying the iden-
(3.9 ity from Eq. (3.4) again, we break the first sum in E@t.2)
into three parts:
The results derived here may be trivially generalized to the

case of a rhombic cell, but our concern in this paper has only

; . . G3p(Xq,X%9,%X3) =G X1, X0, X3) + Ggad X1, X0, X
been with orthorhombic cases. The results obtained here 30(X1, %2, %) ELc(X1, Xz, Xs) slatf X1,X2:Xs)

were numerically checked and found to be in agreement with L] RN 1+ 6 2 4.5
those of Grgnbech-JensgRy. 415 3 |3 )
IV. COULOMB SUM IN 3D where

The energy ofN particles contained in an orthorhombic (X0, X, Xa)
unit cell with periodic boundaries and interacting through a CrLol, XX
Coulomb type potential in 3D can be expressed as 1 1N -

E 2 ) S ar Tl 2mm, yao{m})
E3D Gap(rj—rj) + G+ — ,
o = 5, 21 G Ganlli = 1) * 2 6 Cser ( ar ) 1= myol{mJoostimysolm) (2615
4. sint{ myso{m})]
2

where the charges are denoteddpyand the positions of the x[1 cos(zq-rm ) (4.6)
charges in the unit cell byI and 1si=<N. We will obtain i=1

expressions foB;p(r) andG2D: in this section. The applica-
tion of Eq.(2.11) for an orthorhombic cell in 3D leads to  and
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115 < TR
Slal{xlaXZaXIS) _3 E T F< 2’77’)’30({m})| |> Gl(XZ, 3) 3 —E Wex% 27Tm2@>

lal2mym, Y30 {m}) |1|2 |3,2m=1 My

2
X HC05<27Tm|I ) s |x3| 4.7 ><co<2wm2)|( ) (4.11
i 1'2 2

i=1

We note an important aspect of this breakup of the sum iand
Eq. (4.2 into three parts. Equatio@.7) is independent off;

asl,/ m}) does not depend ol3. In fact the expression 2 11 T
3l yao{m}) p 3 p GylXy, Yo Xg) = = g+ = —

in Eq. 4.7 is a three—dir_nengional Coulqmt_) sum for a cell 41, 77|1|2m' i V(my/1)2 + (myll,)2

that is open along thg; direction and periodic along; and 172

X,. Thus the sum in Eq4.7) corresponds to the slab geom- m\? [m,)?

etry. Note that the subscript ELC stands for the so called Xexp - 2m (I_> + (I_> X3

electrostatic correction term, a phrase borrowed from Ref. 1 2

[13]. At this point it is worthwhile to recast the last term in

Eq. (4.5 in a different form, which will prove to be useful Xl—{ COS<27Tm ) (4.12
|

later in the discussion. Suppose we havecharges in a
charge neutral unit cel;q;=0. Let us assume that the posi-
tion of theq; is denoted by(x;;,Xsi,%5). Then the third term
in Eqg. (4.5 will give rise to a term in the total energy. This

First we obtainG, in a closed form as follows. We may
employ the identity from Eq(3.6) to obtain

term will be given by %
Gi(Xg,%g) == —In[cos)‘(er—) - s<27-r—2>}
2 I l2
Ez_l Il ( EQ|QJ|X3| X3]| ) (4-8) |n(2) |X|
1l2l3 + o3 (4.13
s il
which after expanding the argument and using the charge
neutrality condition gives As discussed in Appendix AG; has a logarithmic diver-
gence wherx,/1, andxs/l, tend to zero. As we will see soon,
20 a similar logarithmic divergence with opposite sign arises
E,=- v M3, (4.9 from the termG,. These two divergences cancel each other
to give a finite contribution t&,, toward small values of,

andXs.

We consider the case &, from Eq.(4.12. Applying the
Poisson summation rulg4], the sum ovem, in Eq. (4.12
may be transformed to a sum involving Bessel functions of
the second kind14]:

whereM3;=2,0g;X5 stands for the total dipole moment along
the x5 direction.

Let us now consider the convergence@f, - and Gg)ap
The functionGg, ¢ decays as exXp2my;o{m}p)[1—|xs|/15]).
Thus we see thaGg ¢ converges exponentially fast for O
<r3=<0.5. In fact the slowest convergence @f, - occurs

N 2
for the case;=0.5, but even this slowest convergence varies L exd| /|Z|\‘a +(2m/ )] p<27-rim§>
as exp-myso({m})], which is extremely fast, keeping in B Va2 + (2 5)? 6
mind the inequality of Eq(4.4). ———s
Now we consider the convergence Gf,, The previ- =2 KolaZ + (x+ am)?). (4.19

ously mentioned problem of convergence still persists and m

Ggap fails to converge fast when<9r;,<0.1. So the next entifyin
step is to separate out this diverging behavior toward smaIIId 9
value ofrs,. For that purpose we break the sum owgs in Imy|

m
Eqg. (4.7) as follows: 5=, z=Xs, a:277|—1, andx=x,, (4.15
1
2 - E + E ’ we can write
MM mp=0m;,  mymy 5 | |
Myl 2 2)
o i ) Go(Xq,X9,X3) = — K<2 — V(X + mpl5)~ + X
wheremy implies that the term correspondingri@=0 is not 20, %2:%5) Ilm,E o\ 7 I O +mel) 3
to be included. Thus we break @, as 1M
X cos<2 m Xl) 27T|x | (4.19
ar I B . .
Gelaf X1, X2, X3) = G1(Xp,X3) + Go(Xq, X0, X3),  (4.10) ! v/ 1l 3
where The sum in Eq(4.16) may be expressed in two parts as
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m
Ga(X1,Xp,X3) = — E Ko( 7T_| V(%o + Myl )2 +5
" 1

mj.m;
X cos( 2mm— )
1

X1
X cos( 27— I )
1

We note that the first term in E¢4.17) has no convergence
problem asx, andxs are positive numbers arld=1,. This
term will converge even for the case whers®, and Xz is
zero. The convergence &, and thus that 06, and Gsp,
depends upon the ratio

= Ko( 7T_1|\ +X3)
4

Il,

21
— Xl

l1l2

(4.17)

2 2\1/2
X5 + X
- erxg) - | ) : (4.18
1

which appears in the second term on the RHS of BdL7).

For p>0.1, Eq.(4.17 will have a very good convergence.

However, ifx, andxs are such that the condition>0.1 is
not satisfied then we should transform E4.17) further.

This can be done by using the results derived in Appendix B

where it is shown that

4 < 2m 2mm
- Ko( T 1(X§+X§)l/2>005< T 1X1>

1m=1 I1 I1
2 ([ 0G+x3)? 1

:|_In oL NI
1 1 \’X1+X2+X3

1 1 1
- — 3T T 2
lin=1 \Wp?+ (ng+%)%  Vp®+(ng—X)

C{WN+X) + (N -x)} +1§ (— 1/2)
Iy l1121 |
Xp?[2(21+ 1N +x) + (2 + 1L,N=-x)],
(4.19

f(Xq, X0, Xg) =

Galat X1, X2 X3) = —

l1m=1 g 1

In(2)

1 X3 Xo
ZIn| cosh 272 | - cod 272 | | -
ly P P Iy

4 2mm 2mm
+—E Ko( m 1(x2+X3)1/2)CO<T_1

)

PHYSICAL REVIEW E70, 066703(2004

wherex=x,/1; and s and { stand for the digamma and Hur-
witz zeta functions, respectiveljd= 1 is the smallest integer
satisfying the conditiotN> p+x. Thus we can choosd=1,

as even for the worst case one heas0.1 andx=0.5. How-
ever, for better convergence it is desirable that one chddses
such thatN>p+1.

We can now write the following short algorithm to calcu-
late Gy, First we set our axis such thig=1,=1,. Next,
using the periodic boundary conditions, the separation be-
tween two particles can always be reduced in such a way that
the individual components satisfy<0x; <I;. Thus, the values
of r;=x;/1; lie between 0 and 1. From the inherent symmetry
of the problem, the energy corresponding to eight different
separations of(1+r)/2,(14r,)/2,(14£r3)/2) is the same.
This essentially means that we can concentrate our attention
on only those separations between the particles that corre-
spond to B<r;<0.5. If somer;>0.5, we can replace it with
1-r;. Next, we look at the value ak,=r3/1,. If r3,>0.1, we
can combine Eq4.13) with Eq. (4.12 to obtain the follow-
ing form for Gg)

In(2
Gelag X1, X2,X3) = | |n[COS)’(277)I(—j> - CO{Z#T—E)] - %l)

S U

mhlp 7 Nyl + (myll)?

2 2
XEX4—27T (ﬂ) +<@) |X3|>
I I,

x11 COE(ZWM ) (4.20

i=1

However, if 0<r3,<0.1, then we look at the value ¢f,
which is defined in Eq(4.18. If p>0.1, we should use the
following form of G4, Which is obtained after combining
Eqgs.(4.13 and(4.17):

2 —_— X,
= > K0(27-r||—| V(% + mply)? + x3> c0<27-rmlI )
Ly mg ! 1

(4.21)

If p<0.1 then we use the identity in E1.19 to write G, @S

X3 X In(2
Gglad X1, X2, X3) = — —In{cosf<27—> - CO<271'—2>] ( )
Iy l2 l2 Iy
N-1
. lgln((x§+ x§)1’2) . 1 1
1

+
—_—
2, \s’xrf+x§+x§ |1n1_

S

I1I =1

_2_1(

( ) p?[Z(20+ LN +x) + (2 + LN =x)].

PR
E KO(Z Iy r(x2+m2I2)2+x3)cos<21-rml )
|1 / ’ |1 Il

my,my

1 1 )_{w(N+x)+w<N—x>}
Vp?+(+x)2 p? + (ny - x)? Iy

(4.22
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Although Eq. (4.22 is meant to be used only when 12

p<0.1, the equation is defined for all valueswés long as 2Myac=— — > /Liz

N is chosen such th&t> p+1. The series given in E4.22 T my,my \'mi T

is valid when bothx, and x3 are nonzero. In this case, the 2+ 2T = (= 7)™ — 3 43— 7)™
argument of the first logarithmic term on the RHS of Eq. X{exp[ ALY rle] (, 12) S+3C- D™
(4.22 is always greater than zero. However, for very small sinh(7r\my + m%)

values ofx, andx; (say both less than=1073) the first and

the fourth terms diverge. In this situation one should com- - 2( /2 Ko(2mmymg|) = In(4) + - ”)' (5.4
bine the diverging terms together using the functlomle- MM

fined in Appendix B. _ Restricting the sum ovem; and m, between -4 and +4, a
We have thus shown how to compu@g;,; for all regions  simple calculation OrMATHEMATICA gives anMcqc value
Of the unit Ce”. S|m||ar reSUltS fOI‘ the Slab geometry haVecorrect up to 108 and anMNaCI Va|ue correct up to 1'@ |n

previously been obtained in Refdl4,15,16. The results i addition we also obtain a simple relationship between the
Egs.(4.20 and(4.22) correspond, respectively, to the “near” two Madelung constants:

and “far” formulas derived by Arnold and Holfd4]. Also, it

is an easy matter now to obtain expressiongdgs from Eq. csdmV(2m, + 1)% + m%]

: ) 2Mpaci=Mesci+ 6 2
(4.5). One can obtain the self-energy for a 3D system as NaCl = CsCl my.m, \/(2m1+ 12 +m2
. (5.5
G3D.= lim <G3D(xl,x2,x3) - W) o _ _ _ _ _
(x1.%2:%3)—(0,0,0 VX + X5+ X3 This interesting relationship was first established by Hautot
/ 17] in the 1970s using Hankel integrals and Schloimilch
1 7 exi- mysimp] 2 o g 9
== - +— .
T lilo o, Yao{Mp) sinf{mysofmp)] 14
| | 2 (4m.\ 2 VI. CONCLUSION
X > K0(2w|m1mz|—2) +—33——In(ﬂ> = .
- ./ 11,3 1y [ I Complete expressions for the Coulomb sum for a rectan-
172

gular cell in 2D and an orthorhombic cell in 3D were de-
(4.23 rived. We also obtained expressions for the self-energies. The
expressions obtained provide convergence in all parts of the
unit cell. Considerable simplification has been achieved over
Sperb’s work[5] in terms of deriving the equations. The
V. MADELUNG CONSTANTS proposed formula for the potential energy when the two
charges are very close differs from that of Sperb. In particu-

Using the formulas developed above, it is an easy matteIFar, when the charges are close together, Spégyformula

to obtain exp_ressions for the Madglung constants of NaChas a triple SUNEQS. (2.4) and(2.7)]. In our expression, we
and CsCI. A simple structural analysis of CsCl easily leads tchave at most a double sum. Similar results for the 3D case

the expression have previously been obtained by Strebel using a rather in-

where forGzp we use Eqs(4.5 and(4.22.

111 volved procedurg18]. Our results do not require any con-
Mcsci= G3D<—,—,—) - Gﬁgf, (5.1 vergence parameter like that used in Ewald sums, neither do
222 our formulas involve any complementary error functions.
and similarly for NaCl we see that These error functions in an Ewald sum are a source of loss of
precision when calculating Madelung constants to higher ac-
1 11 1 curacies.
Mnaci= > 63D<§,§,§> + 3Gao<01015> In retrospect, we see that these results could be derived in

another way by starting off with the Green'’s function expres-
_3G (_ 0 _) 3 G3D} (5.2 sion for the D +h slab geometry system and then adding the
80\ 2"y self {1 : ELC term which takes into account the rest of the layers. In
this way we will get only the first two terms of E4.5). The
where Eq(4.5) can be used foB3p(X;, %2, %3) with all Ii's set  third term is then obtained by adding a term proportional to
equal to 1. From the above equations we obtain the followingv3 from outside, wheré; stands for the component of the
expressions for the Madelung constants of CsCl and NaCl:total dipole moment along thg; direction. In the present
work this dipole term arises naturally, as shown in &39).

_ 1 i 7 [exp(— m/mZ+md) — (- 1)™Me] This dipole term has been discussed by Sifi]. Thus this
Mcsci= — = \/7nﬁ+ me Sim,(mr%Jr ) slabwise summation plus a dipole term added from outside,

apart from an unimportant constant, leads to the same ex-
- 2( E Ko(2m|mymy|) = In(4a) + y - 77) (5.3 pression as in Eq4.5). Thus, our Eqs(4.5) and(4.9) can be
], m} viewed as an alternative derivation of Eg) in Ref. [13].
An advantage of the method developed here is that one
and can achieve better time scaling in a simulation. Using the
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expressions presented in this paper, the time to calculate the 2! 2!

forces and energy for a 3D system in a computer simulation L(xy) = In{l + 5()’2‘ X?) + a(YA‘ x2y? + x4
scales ad\?, whereN is the number of charges present in the ' '
unit cell. However, one can achiei®3In(N)? scaling after a
little modification in the expressions presented here. This is
the same scaling as achieved by Arnold and Hfl4] for a
2D+h system. The scaling remains the same for the twdJsing the results from Eq$Al) and(A4) in Eq. (4.13), we
cases because the electrostatic correction term can be cogge that for small values &/1, andxs/I,, G; can be written
puted linearly if we remove the contribution of the first two as

closest layers enclosing the unit cell in a given direction as 1 2+ ] @ g
opposed to removing the contribution of just one layer as Gy (X, Xa) = ——In[ZﬂZ 2773 } _n + o3

+ 3@4 +x4)(y? = x?) + O(xs,y8)} . (Ad)

done by Arnoldet al. [13] and in this paper. Also the results [ |§ I ! (P11

presented here can be generalized to a rhombic cell in 2D 1 (% x

and a triclinic cell in 3D[20]. - _L(_Z,_3>' (A5)
Our proposed expressions can be applied to calculation of RN P P!

Madelung constants in 3D. Results obtained for the MadeWhich clearly shows a logarithmic divergence %1, and
lung constants of CsCl and NaCl match those in the Iitera;( /1 tend toyzero 9 9 2
3112 .

ture.
In conclusion we have provided a very simple derivation
of complicated results previously obtained by many authors APPENDIX B: LINE CHARGE
using different, sometimes complicated, techniques We commence with the identifi2],
[3,5,14—16.
4 2mm 27m
ACKNOWLEDGMENTS fOuXeXe) = - > Ko( | 1(X§+X§)1/2)COS< | 1X1>
1m=1 1 1
| am thankful to Dr. Y. Y. Goldschmidt for useful discus- 2 02+ x2) 12 1
sions. | also thank Philip C. Tillman and Mahesh Bandi for ==q y+ ML) e
suggesting improvements in the paper. ly 2, VX + X5 + X5
APPENDIX A: LOGARITHMIC DIVERGENCE
where
Consider the function
- 1
2 4 %2 S(X,X,X):E(
L(x,y) =In[coshy — cosx] — In{ y } . (A1) nrmes n=1 V/xg + xg +(nly; = x)?
1
We want to examine the limiting value &fasx andy tend * BE 32 + (Nl + ;)2 “n) (B2)
to zero. For this reason we expand the argument of the first 20 t
logarithmic term in Eq(Al), We can further transform the identity in E€B1) along the
lines worked out by Streb¢lL8] and Arnold and Holn{14].
coshy — cosx = y2+ %2 + y'-xt + yo+x° Let us look at
y “\ 2 41 6!
1 1 1
8 8
y X h( ,x>:—2(—é——)
+( 8l ) +0O(x0y19). (A2) P lipen \Vp2+ (N+x/1)2 N
. . . . 1< 1 1
Factoring out the first term on the right-hand side, &R) ==> = s =
can be written as linst \WpP+ (N+N=-1+x/1)* n+N-1
o N
2,2 1 1 1 1«1
_(Yrx :—E(—*——)%E—, (83)
2! 2! whereN=1, y=N-1+x,/l4, and
X{1+Z(y2—x2)+§(y“—x2y2+x4) y n
2! | | p:—(X%Jng)ll2 x= 22 (B4)
+8—;<y“+x“)(y2—x2)+0<x8,y8)}. (A3) Lk
Assumingp < |1+y|, the binomial expansion of the first term
ThusL can be written as in the above equation gives
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1 _ (1/2) o1
Vp2+(n+y)? o\ P In+y|?*t

“(-1/2 1 1
2 ( ) |2p+1 +

=1 In+y In+y|’

(B5)

where(™2)

the sum oven inside and obtain

12( 1/2) 2"2

h(p,x,) =
' Ilp— p

|n+y|2p+1

E—.

I1n-

(B6)

A

I1n 1

In+y]| _H)

Now, using the definition of the Hurwitz zeta function,

{(,y) = E (B7)

(k+y)"

we obtain

]

D e

(B8)
1Nty

|2p+]_ §(2p+ 111 +y)

Also the second sum in E@B6) is easy to obtain. By the
definition of the digamma functiogr we have

- 1 1
2( ——):—y—w(1+y). (B9)
n=1

In+yl n

Thush(p,x;) can be written as

stands for the binomial coefficient. We can take

PHYSICAL REVIEW E 70, 066703(2004)

h(p, xﬁ——LM E(_1/2>p2'§<2l+1,1+y>
Iy Iy I1|-1 |
EnZlH (B10)

Using Eqs.(B2) and(B10) we obtain

1“5( L, 8 _g)

It \Wp2+(n+x)?2  \p2+(n-x?2 n

S(Xq, X0, X3) =

1 ( 1 1 2)
+ = -=
l1p=n \Vp +(n+x)2 Vp2+(n-x2 n

_EN—1< 1 . 1 ) ) 2_’}/
lip W2+ (n+x)2 \p2+(n-%?2) |

_ YN+ YN=X) E( 1/2)

I1 I1I 1

xp?[{@21+1N+x)+ {21 +1,N-x)]. (B12)

Note that for Eq.(B12) to be valid, the condition is that
, wherey=N-1+x,/l,. Keeping in mind thatx;
=0 we getp<|Nxx;/l,|, which will be satisfied ifN>p
+x. Combining Eq.(B1) and Eqg.(B12) gives us the result
that we set out to prove.
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