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I propose a method to calculate the logarithmic interaction in two dimensions and the Coulomb interaction
in three dimensions under periodic boundary conditions. This paper considers the case of a rectangular cell in
two dimensions and an orthorhombic cell in three dimensions. Unlike the Ewald method, there is no parameter
to be optimized, nor does the method involve error functions, thus leading to the accuracy obtained. This
method is similar in approach to that of Sperb[Mol. Simul. 22, 199(1999)], but the derivation is considerably
simpler and physically appealing. An important aspect of the proposed method is the faster convergence of the
Green’s function for a particular case as compared to Sperb’s work. The convergence of the sums for most
parts of the unit cell is exponential, and hence requires the calculation of only a few dozen terms. In a very
simple way, we also obtain expressions for the interaction for systems with slab geometries. Expressions for
the Madelung constants of CsCl and NaCl are also obtained.
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I. INTRODUCTION

In molecular dynamics(MD) and Monte Carlo(MC)
simulations one is required to calculate the potential energy
and forces acting on a particle due to other particles. Some-
times such forces have a long-range interaction. In such situ-
ations, periodic boundary conditions are usually imposed in
order to avoid the boundary effects, which might be espe-
cially prominent for small systems that are usually employed
in MD simulations. Under periodic boundary conditions in-
teraction of a particle with another particle includes the di-
rect interaction plus an interaction of the first particle with all
replicas of itself as well as all replicas of the second particle.
These replicas come into the picture due to the periodic rep-
etitions of a charge under the periodic boundary conditions.
The energy contribution arising from the interaction of a par-
ticle with its own replicas is termed the self-energy. The
calculation of self-energy is important in a MC simulation,
where the size of the box might change during simulation,
such as in isobaric MC calculations. The natural question
that arises is how one may compute the long-range interac-
tion of a particle with a second particle along with all the
replicas of the second particle. The self-energy part may then
be obtained trivially as well. For 80 years, researchers have
employed the Ewald sum technique[1] to perform such sum-
mations. However, the Ewald sum technique has certain
drawbacks. The primary drawback is the optimization of a
parameter that renders breakup of the original algebraic sum
into two parts, one in real space and the other one in Fourier
space. Only when this parameter is chosen properly do the
sums in the real and Fourier spaces converge fast. A second
problem with the Ewald sum is that even if one achieves
optimal choice of the parameter for breaking up the sum, one
might lose numerical accuracy as the terms in these sums
involve error functions, whose evaluation to a high degree of
accuracy is difficult. In this paper we will consider the loga-

rithmic interaction in two dimensions(2D) and Coulomb in-
teraction in three dimensions. The 2D case has been satisfac-
torily dealt with in Ref.[2]. Thus mainly we will concentrate
on 3D results. The Ewald method is the most widely used
technique for system in 3D. An alternative technique for
summation over long-range forces in 3D for a cubic unit cell
was given by Lekner[3]. A tedious method was employed to
obtained the self-energy part of the interaction. However,
Lekner generalized his work to an orthorhombic cell[4] and
obtained self-energies in a much simpler manner. These re-
cent methods by Lekner[3] and Sperb[5] are similar in spirit
but their derivation involves complicated algebra. One prob-
lem with Lekner’s expressions is that they involve a triple
sum. Sperb’s[5] results are better in that part of the interac-
tion has only a double sum. Nevertheless a triple sum[Eqs.
(2.4) and (2.7) in Ref. [5]] is still employed for the case
when both particles are very close to each other.

The technique that we propose is based on a series sum-
mation in Fourier space. Work along these lines has been
previously reported in recent papers[6,7], as well as by Har-
ris et al. [8], Sperb[5], Crandallet al. [9], and Marshall[10].
The outline of this paper follows. In Sec. II, we derive a
general formula for dimensiondù2. In Sec. III the formula
is applied to get the logarithmic sum in 2D. Section IV de-
scribes application of the general formula to get the Coulomb
summation 1/r for the slab geometry case as well as for 3D
case. Section V considers evaluation of Madelung constants
for CsCl and NaCl. Finally, we discuss our results in Sec. VI.

II. COULOMB SUM IN d DIMENSION

An interaction that satisfies the Poisson equation ind di-
mensions will be termed a Coulomb type potential for that
particular dimension. For example, the logarithmic interac-
tion is a Coulomb type interaction in 2D. In this section we
discuss how one can calculate a pairwise Coulomb interac-
tion between two particles, separated by a displacementr .
For simplicity, we consider the case of a unit charge situated
within an orthorhombic cell ind dimensions. Let thed sides*Electronic address: satst27@pitt.edu
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of the unit cell be labeled byl1, l2,… , ld. The basic unit cell
repeats itself in alld dimensions. The unit charge interacts
with other identical unit charges(for the case of different
chargesq1 andq2 one just gets an extra factor ofq1q2) situ-
ated at the vertices of the periodic structure. The interaction
between two particles is given by the Green’s function ind
dimension,Gsr d, which satisfies the Poisson equation

¹2Gsr d = − Cdo
l

dsr + ld. s2.1d

where ¹2 is the Laplacian operator ind dimensions,l de-
notes ad-dimensional vector, whose components are integer
multiples of l i’s, andCd is specified by

Cd = HB2 for d = 2,

sd − 2dBd for d . 2,
J

whereBd stands for the coefficient of thesd−1d-dimensional
surface element ind dimensions,

Bd =
dspdd/2

Gsd/2 + 1d
. s2.2d

HereGsxd stands for the gamma function. ThusB2=2p , B3

=4p, etc. We note that the coefficients in Eq.(2.1) have been
chosen such thatGsr d stands for a Coulomb type summation
in d dimensions. For example, if we considerN charges
qi ,q2,… ,qN in a neutral unit cell then ford.2, we will have
a total energy of the systemE given by

E = o
hmjd

8
o
i,j=1

N

3
qiqj

hsm1l1 − r ij ,1d2 + sm2l2 − r ij ,2d2 + ¯ + smdld − r ij ,dd2jsd−2d/2

s2.3d

wherer ij ,k stands for the thekth component of vectorr i j and
hmjd stands for a set ofd numbersm1,m2,… ,md. The sum-
mation over eachmi runs from −̀ to +`. The prime on the
summation sign indicates that when allmi are zero, the term
corresponding toi = j is not to be included.

The solution to Eq.(2.1) can be formally expressed in
Fourier space,

Gsx1,x2,…,xdd =
Cd

s2pd2

1

l1l2 ¯ ld

3o
hmjd

ei2psm1x1/l1+m2x2/l2+¯+mdxd/ldd

hsm1/l1d2 + sm2/l2d2 + ¯ + smd/ldd2j
,

s2.4d

where 0øxi / l i ,1. The functionGsx1,x2,… ,xdd, as defined
above, diverges since the term corresponding to allm’s being
equal to zero blows up. This is expected since the sum de-
fined in Eq.(2.4) has a contribution coming from an infinite
set of identical charges, i.e., the unit cell is not charge neu-
tral. For the sum in Eq.(2.4) to make sense we add an in-
finitesimal term to the denominator and subtract off a coun-
terterm from the whole sum as follows:

Gsx1,x2,…,xdd =
Cd

s2pd2

1

l1l2 ¯ ld
lim
j→0

So
hmjd

ei2psm1x1/l1+m2x2/l2+¯+mdxd/ldd

hsm1/l1d2 + sm2/l2d2 + ¯ + smd/ldd2 + sj/ldd2j
−

1

sj/ldd2D , s2.5d

where j is an infinitesimal parameter which tends to zero.
The prescription employed above amounts to assumption of
the presence of a uniform background charge. For example,
let us consider the case of 3D. For every chargeq, one may
imagine a uniform distribution of charge, such that the total
charge per unit cell adds up to −q. For a charge neutral
periodic system, imposing these kinds of background uni-
form charge distributions does not matter since the total uni-
form background charge adds up to zero. However, now a
unit charge located within the unit cell at positionsx1,x2,x3d
not only interacts with a second charge located at the origin
and its periodic images, but also interacts with the neutraliz-
ing background charge, compensating the charge of the sec-
ond particle. This particular way of introducing the neutral-
izing background charge leads to only the intrinsic part[3] of
the potential energy. Now, it can be easily verified that Eq.
(2.5) satisfies the following equation:

¹2Gsr d = − Cdo
l

dsr + ld +
Cd

l1l2 ¯ ld
, s2.6d

where the last term in Eq.(2.6) represents the uniform back-
ground charge. The complete expression for the potential has
a term arising from surface contribution. For the 2D case this
turns out to be zero, but for 3D one obtains a contribution
from a dipole term[11].

Moving further, we can perform one of thed sums in Eq.
(2.5) analytically [12],

gsxd,hmj,jd

= o
md=−`

`
ei2pmdxd/ld

smdd2 + sm1ld,1d2 + ¯ + smd−1ld,d−1d2 + j2

=
p

gdshmj,jd
coshfpgdshmj,jds1 − 2uxdu/lddg

sinhfpgdshmj,jdg
, s2.7d
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wherel i,j stands forl i / l j andgdshmj ,jd is defined as

gdshmj,jd = Îsm1ld,1d2 + ¯ + smd−1ld,d−1d2 + j2. s2.8d

For convenience we also define

gd0shmj,jd = Îsm1ld,1d2 + ¯ + smd−1ld,d−1d2. s2.9d

Using Eqs.(2.5) and (2.7) one obtains

Gsx1,x2,…,xdd =
Cd

s2pd2

ld
l1l2 ¯ ld−1

3lim
j→0

S o
hmjd−1

gsxd,hmj,jd

3 p
i=1

sd−1d

cosS2pmi
xi

l i
D −

1

j2D . s2.10d

In the limit j→0, the term corresponding to allmi being set
to zero in Eq.(2.10) must be separated out as follows:

Gsx1,x2,…,xdd

=
Cd

s2pd2

ld
l1l2 ¯ ld−1

3UF o
hmjd−1

8
gsxd,hmj,jd p

i=1

sd−1d

cosS2pmi
xi

l i
DGU

j=0

+
Cd

s2pd2

ld
l1l2 ¯ ld−1

p2

3
H1 − 6S uxdu

ld
D + 6Sxd

ld
D2J , s2.11d

where the prime on the summation sign implies that the term
corresponding to allmi being zero is not to be included. In
Eq. (2.11), we separated out the term corresponding to allmi
being set to zero and took the limitj→0 as follows:

lim
j→0

Sp

j

coshfpjs1 − 2uxdu/lddg
sinhfpjg

−
1

j2D
=

p2

3
H1 − 6S uxdu

ld
D + 6Sxd

ld
D2J . s2.12d

Equation(2.11) forms the main result derived in this section.
It is important to note that as a result of the symmetry
present in the problem, it suffices to look at only that part of
the unit cell which corresponds to 0øxi / l i ø0.5 for all i ’s.
Hence, from here on we will assume 0øxi / l i ø0.5. In the
next two sections, we investigate two important cases corre-
sponding tod=2 andd=3.

III. LOGARITHMIC SUM IN TWO DIMENSIONS

The energy ofN particles contained in a rectangular unit
cell with periodic boundaries and interacting through a loga-
rithmic potential in 2D can be expressed as[5]

Etotal
2D =

1

2 o
i,j ;iÞ j

qiqjG2Dsr i − r jd + o
i

qi
2Gself

2D , s3.1d

where the charges are denoted byqi and the position of the
charges in the unit cell byr i where 1ø i øN. We will obtain

expressions forG2Dsr d andGself
2D in this section. The pairwise

interaction is given by the Green’s functionG2Dsr d which
satisfies the Poisson equation in 2D,

¹2G2Dsr d = − 2po
l

dsr + ld +
2p

l1l2
, s3.2d

where the last term on the right-hand side(RHS) of Eq. (3.2)
stands for the neutralizing background charge. Equation(3.2)
is a special case of Eq.(2.1). We look for a solution of Eq.
(3.2) with periodic boundary conditions along thex1 andx2
directions. This solution can be easily obtained from the gen-
eral formula Eq.(2.11) derived in the previous section,

G2Dsx1,x2d =
1

2p

l2
l1
o
m8

p

g20smd

3
coshfpg20smds1 − 2ux2u/l2dg

sinhfpg20smdg
cosS2pm

x1

l1
D

+
1

2p

l2
l1

p2

3
H1 − 6S ux2u

l2
D + 6Sx2

l2
D2J , s3.3d

where the prime onm implies that the term corresponding to
m=0 is to be excluded. Without any loss of generality we
may assume that sides of the rhombic cells have been labeled
so thatl1ø l2. This condition will make sure thatg20smd.1
for all integer values ofm. Let us now consider the conver-
gence of the sum in Eq.(3.3). The first part of Eq.(3.3)
converges exponentially, but in some cases the convergence
may be very slow. Specifically, the leading term in Eq.(3.3)
decays as exps−2pumuux2u / l1d. Thus the convergence depends
on the ratiox2/ l1. We see that one obtains a slow exponential
convergence when 0øx2/ l1,0.1. To handle this case prop-
erly, we break the first sum in Eq.(3.3) into two parts by
application of a trigonometric identity,

coshsa − bd
sinhsbd

=
coshsadexps− bd

sinhsbd
+ exps− ad. s3.4d

This leads to the expression

1

2p
o
m8

p

umu
coshfpml2,1s1 − 2ux2u/l2dg

sinhspumul2,1d
cosS2pm

x1

l1
D

=
1

p
o
m=1

`
p

m

exps− pumul2,1dcoshfpml2,1s2x2/l2dg
sinhspml2,1d

3cosS2pm
x1

l1
D +

1

p
o
m=1

`
p

m

3expS− 2pm
ux2u
l1
DcosS2pm

x1

l1
D . s3.5d

We notice that the first part of Eq.(3.5) converges even for
the case when 0øx2/ l1,0.1. In fact the slowest conver-
gence for the first part will now occur for the case when
2x2= l2. But even this “slowest” convergence amounts to a
very rapid exponential convergence of exps−pumul2/ l1d. We
have yet to account for the last sum in Eq.(3.5). Using the
identity
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o
n=1

`
1

n
exps− 2npxdcoss2pnyd = −

1

2
lnfcoshs2pxd − coss2pydg

+ px −
lns2d

2
, x . 0, s3.6d

the last part of the sum in Eq.(3.5) may be explicitly evalu-
ated to

−
1

2
lnHcoshS2p

x2

l1
D − cosS2p

x1

l1
DJ + p

ux2u
l1

−
lns2d

2
.

s3.7d

Assembling the terms together, we finally obtain the follow-
ing expression for the 2D Green’s function:

G2Dsx1,x2d =
1

2p
o
m8

p

umu

3
exps− pumul2/l1dcoshf2pmx2/l1g

sinhspumul2/l1d
cosS2pm

x1

l1
D

−
1

2
lnHcoshS2p

x2

l1
D − cosS2p

x1

l1
DJ

+
pl2
6l1
H1 + 6Sx2

l2
D2J −

lns2d
2

. s3.8d

The self-energy may be easily obtained as

Gself
2D = lim

sx1,x2d→s0,0d
hG2Dsx1,x2d + lnsÎx1

2 + x2
2dj

=
1

2p
o
m8

p

umu
exps− pumul2/l1d
sinhspumul2/l1d

− lnS2p

l1
D +

p

6

l2
l1

.

s3.9d

The results derived here may be trivially generalized to the
case of a rhombic cell, but our concern in this paper has only
been with orthorhombic cases. The results obtained here
were numerically checked and found to be in agreement with
those of Grønbech-Jensen[2].

IV. COULOMB SUM IN 3D

The energy ofN particles contained in an orthorhombic
unit cell with periodic boundaries and interacting through a
Coulomb type potential in 3D can be expressed as

Etotal
3D =

1

2 o
i,j ;iÞ j

qiqjG3Dsr i − r jd + o
i

qi
2Gself

3D +
2p

3 So
i

qir iD2
,

s4.1d

where the charges are denoted byqi and the positions of the
charges in the unit cell byr i and 1ø i øN. We will obtain
expressions forG3Dsr d andGself

3D in this section. The applica-
tion of Eq. (2.11) for an orthorhombic cell in 3D leads to

G3Dsx1,x2,x3d

=
1

p

l3
l1l2

o
m1,m2

8 p

g30shmjd
coshfpg30shmjds1 − 2ux3u/l3dg

sinhfpg30shmjdg

3p
i=1

2

cosS2pmi
xi

l i
D +

l3
l1l2

p

3
H1 − 6S ux3u

l3
D + 6Sx3

l3
D2J ,

s4.2d

where

g30shmj,jd = Îsm1l3,1d2 + sm2l3,2d2. s4.3d

Without any loss of generality we assume that the axes have
been labeled such that

l3 ù l2 ù l1. s4.4d

The condition in Eq.(4.4) makes sure thatg30shmjd.1 for
all setshmj. Equation(4.2) is one of our main results for the
3D case. We note that the potential energy obtained consists
of only the intrinsic part[3]. A dipole contribution will have
to be included in Eq.(4.2) to obtain the real potential energy
[3,11]. This dipole contribution is represented by the last
term on the RHS in Eq.(4.1). We notice that the sum
in Eq. (4.2) converges exponentially. In fact the terms corre-
sponding to large um1u and um2u decay as exp
3f−2px3Îsm1/ l1d2+sm2/ l2d2g, which with the assumption in
Eq. (4.4) means that terms decay faster than exp
3f−2px3Îsm1/ l2d2+sm2/ l2d2g. Thus the convergence de-
pends upon the ratior32=x3/ l2. For r32.0.1, the conver-
gence of the series in Eq.(4.2) is extremely good. However,
the convergence slows down for the case whenr32,0.1.
This problem may be solved as follows. Applying the iden-
tity from Eq. (3.4) again, we break the first sum in Eq.(4.2)
into three parts:

G3Dsx1,x2,x3d = GELCsx1,x2,x3d + Gslabsx1,x2,x3d

+
l3

l1l2

p

3
H1 + 6Sx3

l3
D2J , s4.5d

where

GELCsx1,x2,x3d

=
1

p

l3
l1l2

o
m1,m2

8 p

g30shmjd

3
expf− pg30shmjdgcoshfpg30shmjds2x3/l3dg

sinhfpg30shmjdg

3p
i=1

2

cosS2pmi
xi

l i
D s4.6d

and

SANDEEP TYAGI PHYSICAL REVIEW E70, 066703(2004)

066703-4



Gslabsx1,x2,x3d =
1

p

l3
l1l2

o
m1,m2

8 p

g30shmjd
expS− 2pg30shmjd

ux3u
l3
D

3 p
i=1

2

cosS2pmi
xi

l i
D −

2p

l1l2
ux3u. s4.7d

We note an important aspect of this breakup of the sum in
Eq. (4.2) into three parts. Equation(4.7) is independent ofl3
as l3/g30shmjd does not depend onl3. In fact the expression
in Eq. (4.7) is a three-dimensional Coulomb sum for a cell
that is open along thex3 direction and periodic alongx1 and
x2. Thus the sum in Eq.(4.7) corresponds to the slab geom-
etry. Note that the subscript ELC stands for the so called
electrostatic correction term, a phrase borrowed from Ref.
[13]. At this point it is worthwhile to recast the last term in
Eq. (4.5) in a different form, which will prove to be useful
later in the discussion. Suppose we haven charges in a
charge neutral unit celloiqi =0. Let us assume that the posi-
tion of theqi is denoted bysx1i ,x2i ,x3id. Then the third term
in Eq. (4.5) will give rise to a term in the total energy. This
term will be given by

Ez =
2p

l1l2l3
S1

2o
i,j

qiqjux3i − x3ju2D , s4.8d

which after expanding the argument and using the charge
neutrality condition gives

Ez = −
2p

V
M3

2, s4.9d

whereM3=oiqix3i stands for the total dipole moment along
the x3 direction.

Let us now consider the convergence ofGELC and Gslab.
The functionGELC decays as exp(−2pg30shmjdf1−ux3u / l3g).
Thus we see thatGELC converges exponentially fast for 0
ø r3ø0.5. In fact the slowest convergence ofGELC occurs
for the caser3=0.5, but even this slowest convergence varies
as expf−pg30shmjdg, which is extremely fast, keeping in
mind the inequality of Eq.(4.4).

Now we consider the convergence ofGslab. The previ-
ously mentioned problem of convergence still persists and
Gslab fails to converge fast when 0ø r32,0.1. So the next
step is to separate out this diverging behavior toward small
value ofr32. For that purpose we break the sum overmi’s in
Eq. (4.7) as follows:

o
m1,m2

8
= o

m1=0,m28

+ o
m18,m2

,

wherem18 implies that the term corresponding tom1=0 is not
to be included. Thus we break upGslab as

Gslabsx1,x2,x3d = G1sx2,x3d + G2sx1,x2,x3d, s4.10d

where

G1sx2,x3d =
1

p

l3
l1l2
H 2

l3,2
o

m2=1

`
p

m2
expS− 2pm2

ux3u
l2
D

3cosS2pm2
x2

l2
DJ s4.11d

and

G2sx1,x2,x3d = −
2p

l1l2
x3 +

1

p

1

l1l2
o

m18,m2

p

Îsm1/l1d2 + sm2/l2d2

3expF− 2pÎSm1

l1
D2

+ Sm2

l2
D2

ux3uG
3p

i=1

2

cosS2pmi
xi

l i
D . s4.12d

First we obtainG1 in a closed form as follows. We may
employ the identity from Eq.(3.6) to obtain

G1sx2,x3d = −
1

l1
lnFcoshS2p

x3

l2
D − cosS2p

x2

l2
DG

−
lns2d

l1
+ 2p

ux3u
l1l2

. s4.13d

As discussed in Appendix A,G1 has a logarithmic diver-
gence whenx2/ l2 andx3/ l2 tend to zero. As we will see soon,
a similar logarithmic divergence with opposite sign arises
from the termG2. These two divergences cancel each other
to give a finite contribution toGslab toward small values ofx2
andx3.

We consider the case ofG2 from Eq.(4.12). Applying the
Poisson summation rule[14], the sum overm2 in Eq. (4.12)
may be transformed to a sum involving Bessel functions of
the second kind[14]:

1

uduom p
expf− uzuÎa2 + s2pm/dd2g

Îa2 + s2pm/dd2
expS2pim

x

d
D

= o
m

K0saÎz2 + sx + dmd2d . s4.14d

Identifying

d = l2, z= x3, a = 2p
um1u
l1

, andx = x2, s4.15d

we can write

G2sx1,x2,x3d =
2

l1
o

m18,m2

K0S2p
um1u
l1

Îsx2 + m2l2d2 + x3
2D

3 cosS2pm1
x1

l1
D −

2p

l1l2
ux3u. s4.16d

The sum in Eq.(4.16) may be expressed in two parts as
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G2sx1,x2,x3d =
2

l1
o

m18,m28

K0S2p
um1u
l1

Îsx2 + m2l2d2 + x3
2D

3cosS2pm1
x1

l1
D +

2

l1
o
m18

K0S2p
um1u
l1

Îx2
2 + x3

2D
3cosS2pm1

x1

l1
D −

2p

l1l2
ux3u. s4.17d

We note that the first term in Eq.(4.17) has no convergence
problem asx2 and x3 are positive numbers andl2ù l1. This
term will converge even for the case when 0øx2 and x3 is
zero. The convergence ofG2, and thus that ofGslab andG3D,
depends upon the ratio

r =
sx2

2 + x3
2d1/2

l1
, s4.18d

which appears in the second term on the RHS of Eq.(4.17).
For r.0.1, Eq.(4.17) will have a very good convergence.
However, if x2 andx3 are such that the conditionr.0.1 is
not satisfied then we should transform Eq.(4.17) further.
This can be done by using the results derived in Appendix B
where it is shown that

fsx1,x2,x3d =
4

l1
o

m1=1

`

K0S2pm1

l1
sx2

2 + x3
2d1/2DcosS2pm1

l1
x1D

=
2

l1
lnS sx2

2 + x3
2d1/2

2l1
D +

1

Îx1
2 + x2

2 + x3
2

+
1

l1
o
n1=1

N−1 S 1
Îr2 + sn1 + xd2

+
1

Îr2 + sn1 − xd2D
−

hcsN + xd + csN − xdj
l1

+
1

l1
o
l=1

` S− 1/2

l
D

3r2lfzs2l + 1,N + xd + zs2l + 1,N − xdg,

s4.19d

wherex=x1/ l1 andc andz stand for the digamma and Hur-
witz zeta functions, respectively.Nù1 is the smallest integer
satisfying the conditionN.r+x. Thus we can chooseN=1,
as even for the worst case one hasr=0.1 andx=0.5. How-
ever, for better convergence it is desirable that one choosesN
such thatN.r+1.

We can now write the following short algorithm to calcu-
late Gslab. First we set our axis such thatl3ù l2ù l1. Next,
using the periodic boundary conditions, the separation be-
tween two particles can always be reduced in such a way that
the individual components satisfy 0øxi , l i. Thus, the values
of r i =xi / l i lie between 0 and 1. From the inherent symmetry
of the problem, the energy corresponding to eight different
separations of(s1±r1d /2 ,s1±r2d /2 ,s1±r3d /2) is the same.
This essentially means that we can concentrate our attention
on only those separations between the particles that corre-
spond to 0ø r i ø0.5. If somer i .0.5, we can replace it with
1−r i. Next, we look at the value ofr32=r3/ l2. If r32.0.1, we
can combine Eq.(4.13) with Eq. (4.12) to obtain the follow-
ing form for Gslab:

Gslabsx1,x2,x3d = −
1

l1
lnFcoshS2p

x3

l2
D − cosS2p

x2

l2
DG −

lns2d
l1

+
1

p

1

l1l2
o

m18,m2

p

Îsm1/l1d2 + sm2/l2d2

3expS− 2pÎSm1

l1
D2

+ Sm2

l2
D2

ux3uD
3p

i=1

2

cosS2pmi
xi

l i
D . s4.20d

However, if 0ø r32,0.1, then we look at the value ofr,
which is defined in Eq.(4.18). If r.0.1, we should use the
following form of Gslab which is obtained after combining
Eqs.(4.13) and (4.17):

Gslabsx1,x2,x3d = −
1

l1
lnFcoshS2p

x3

l2
D − cosS2p

x2

l2
DG −

lns2d
l1

+
2

l1
o

m18,m28

K0S2p
um1u
l1

Îsx2 + m2l2d2 + x3
2DcosS2pm1

x1

l1
D

+
4

l1
o

m1=1

`

K0S2pm1

l1
sx2

2 + x3
2d1/2DcosS2pm1

l1
x1D . s4.21d

If r,0.1 then we use the identity in Eq.(4.19) to write Gslab as

Gslabsx1,x2,x3d = −
1

l1
lnFcoshS2p

x3

l2
D − cosS2p

x2

l2
DG −

lns2d
l1

+
2

l1
o

m18,m28

K0S2p
um1u
l1

Îsx2 + m2l2d2 + x3
2DcosS2pm1

x1

l1
D

+
2

l1
lnS sx2

2 + x3
2d1/2

2l1
D +

1

Îx1
2 + x2

2 + x3
2

+
1

l1
o
n1=1

N−1 S 1
Îr2 + sn1 + xd2

+
1

Îr2 + sn1 − xd2D −
hcsN + xd + csN − xdj

l1

+
1

l1
o
l=1

` S− 1/2

l
Dr2lfzs2l + 1,N + xd + zs2l + 1,N − xdg. s4.22d
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Although Eq. (4.22) is meant to be used only when
r,0.1, the equation is defined for all values ofr as long as
N is chosen such thatN.r+1. The series given in Eq.(4.22)
is valid when bothx2 and x3 are nonzero. In this case, the
argument of the first logarithmic term on the RHS of Eq.
(4.22) is always greater than zero. However, for very small
values ofx2 andx3 (say both less than«=10−3) the first and
the fourth terms diverge. In this situation one should com-
bine the diverging terms together using the functionL de-
fined in Appendix B.

We have thus shown how to computeGslab for all regions
of the unit cell. Similar results for the slab geometry have
previously been obtained in Refs.[14,15,16]. The results in
Eqs.(4.20) and(4.22) correspond, respectively, to the “near”
and “far” formulas derived by Arnold and Holm[14]. Also, it
is an easy matter now to obtain expressions forG3D from Eq.
(4.5). One can obtain the self-energy for a 3D system as

Gself
3D = lim

sx1,x2,x3d→s0,0,0d
SG3Dsx1,x2,x3d −

1

Îx1
2 + x2

2 + x3
2D

=
1

p

l3
l1l2

o
m1,m2

8 p

g30shmjd
expf− pg30shmjdg
sinhfpg30shmjdg

+
2

l1

3 o
m18,m28

K0S2pum1m2u
l2
l1
D +

l3
l1l2

p

3
−

2

l1
lnS4pl1

l2
D +

2g

l1
,

s4.23d

where forG3D we use Eqs.(4.5) and (4.22).

V. MADELUNG CONSTANTS

Using the formulas developed above, it is an easy matter
to obtain expressions for the Madelung constants of NaCl
and CsCl. A simple structural analysis of CsCl easily leads to
the expression

MCsCl= G3DS1

2
,
1

2
,
1

2
D − Gself

3D , s5.1d

and similarly for NaCl we see that

MNaCl =
1

2
FG3DS1

2
,
1

2
,
1

2
D + 3G3DS0,0,

1

2
D

− 3G3DS1

2
,0,

1

2
D − Gself

3DG , s5.2d

where Eq.(4.5) can be used forG3Dsx1,x2,x3d with all l i’s set
equal to 1. From the above equations we obtain the following
expressions for the Madelung constants of CsCl and NaCl:

MCsCl= −
1

p
o

m1,m2

8 p

Îm1
2 + m2

2

fexps− pÎm1
2 + m2

2d − s− 1dm1+m2g

sinhspÎm1
2 + m2

2d

− 2S o
m18,m28

K0s2pum1m2ud − lns4pd + g − pD s5.3d

and

2MNaCl = −
1

p
o

m1,m2

8 p

Îm1
2 + m2

2

3
hexpf− pÎm1

2 + m2
2g − s− 1dm1+m2 − 3 + 3s− 1dm1j

sinhspÎm1
2 + m2

2d

− 2S o
m18,m28

K0s2pum1m2ud − lns4pd + g − pD . s5.4d

Restricting the sum overm1 and m2 between −4 and +4, a
simple calculation onMATHEMATICA gives anMCsCl value
correct up to 10−8 and anMNaCl value correct up to 10−6. In
addition we also obtain a simple relationship between the
two Madelung constants:

2MNaCl = MCsCl+ 6 o
m1,m2

cscfpÎs2m1 + 1d2 + m2
2g

Îs2m1 + 1d2 + m2
2

.

s5.5d

This interesting relationship was first established by Hautot
[17] in the 1970s using Hankel integrals and Schloimilch
series.

VI. CONCLUSION

Complete expressions for the Coulomb sum for a rectan-
gular cell in 2D and an orthorhombic cell in 3D were de-
rived. We also obtained expressions for the self-energies. The
expressions obtained provide convergence in all parts of the
unit cell. Considerable simplification has been achieved over
Sperb’s work[5] in terms of deriving the equations. The
proposed formula for the potential energy when the two
charges are very close differs from that of Sperb. In particu-
lar, when the charges are close together, Sperb’s[5] formula
has a triple sum[Eqs.(2.4) and(2.7)]. In our expression, we
have at most a double sum. Similar results for the 3D case
have previously been obtained by Strebel using a rather in-
volved procedure[18]. Our results do not require any con-
vergence parameter like that used in Ewald sums, neither do
our formulas involve any complementary error functions.
These error functions in an Ewald sum are a source of loss of
precision when calculating Madelung constants to higher ac-
curacies.

In retrospect, we see that these results could be derived in
another way by starting off with the Green’s function expres-
sion for the 2D+h slab geometry system and then adding the
ELC term which takes into account the rest of the layers. In
this way we will get only the first two terms of Eq.(4.5). The
third term is then obtained by adding a term proportional to
M3

2 from outside, whereM3 stands for the component of the
total dipole moment along thex3 direction. In the present
work this dipole term arises naturally, as shown in Eq.(4.9).
This dipole term has been discussed by Smith[19]. Thus this
slabwise summation plus a dipole term added from outside,
apart from an unimportant constant, leads to the same ex-
pression as in Eq.(4.5). Thus, our Eqs.(4.5) and(4.9) can be
viewed as an alternative derivation of Eq.(4) in Ref. [13].

An advantage of the method developed here is that one
can achieve better time scaling in a simulation. Using the
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expressions presented in this paper, the time to calculate the
forces and energy for a 3D system in a computer simulation
scales asN2, whereN is the number of charges present in the
unit cell. However, one can achieveN5/3lnsNd2 scaling after a
little modification in the expressions presented here. This is
the same scaling as achieved by Arnold and Holm[14] for a
2D+h system. The scaling remains the same for the two
cases because the electrostatic correction term can be com-
puted linearly if we remove the contribution of the first two
closest layers enclosing the unit cell in a given direction as
opposed to removing the contribution of just one layer as
done by Arnoldet al. [13] and in this paper. Also the results
presented here can be generalized to a rhombic cell in 2D
and a triclinic cell in 3D[20].

Our proposed expressions can be applied to calculation of
Madelung constants in 3D. Results obtained for the Made-
lung constants of CsCl and NaCl match those in the litera-
ture.

In conclusion we have provided a very simple derivation
of complicated results previously obtained by many authors
using different, sometimes complicated, techniques
[3,5,14–16].
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APPENDIX A: LOGARITHMIC DIVERGENCE

Consider the function

Lsx,yd = lnfcoshy − cosxg − lnFy2 + x2

2
G . sA1d

We want to examine the limiting value ofL asx andy tend
to zero. For this reason we expand the argument of the first
logarithmic term in Eq.(A1),

coshy − cosx = Sy2 + x2

2!
D + Sy4 − x4

4!
D + Sy6 + x6

6!
D

+ Sy8 − x8

8!
D + Osx10,y10d. sA2d

Factoring out the first term on the right-hand side, Eq.(A2)
can be written as

coshy − cosx = Sy2 + x2

2!
D

3H1 +
2!

4!
sy2 − x2d +

2!

6!
sy4 − x2y2 + x4d

+
2!

8!
sy4 + x4dsy2 − x2d + Osx8,y8dJ . sA3d

ThusL can be written as

Lsx,yd = lnH1 +
2!

4!
sy2 − x2d +

2!

6!
sy4 − x2y2 + x4d

+
2!

8!
sy4 + x4dsy2 − x2d + Osx8,y8dJ . sA4d

Using the results from Eqs.(A1) and(A4) in Eq. (4.13), we
see that for small values ofx2/ l2 andx3/ l2, G1 can be written
as

G1sx2,x3d = −
1

l1
lnF2p2sx2

2 + x3
2d

l2
2 G −

lns2d
l1

+ 2p
ux3u
l1l2

−
1

l1
LSx2

l2
,
x3

l2
D , sA5d

which clearly shows a logarithmic divergence asx2/ l2 and
x3/ l2 tend to zero.

APPENDIX B: LINE CHARGE

We commence with the identity[12],

fsx1,x2,x3d =
4

l1
o

m1=1

`

K0S2pm1

l1
sx2

2 + x3
2d1/2DcosS2pm1

l1
x1D

=
2

l1
Hg + lnS sx2

2 + x3
2d1/2

2l1
DJ +

1

Îx1
2 + x2

2 + x3
2

+ Ssx1,x2,x3d, sB1d

where

Ssx1,x2,x3d = o
n=1

` S 1

Îx2
2 + x3

2 + snl1 − x1d2

+
1

Îx2
2 + x3

2 + snl1 + x1d2
−

2

nD . sB2d

We can further transform the identity in Eq.(B1) along the
lines worked out by Strebel[18] and Arnold and Holm[14].
Let us look at

hsr,x1d =
1

l1
o
n=N

` S 1
Îr2 + sn + x1/l1d2

−
1

nD
=

1

l1
o
n=1

` S 1
Îr2 + sn + N − 1 +x1/l1d2

−
1

n + N − 1D
=

1

l1
o
n=1

` S 1
Îr2 + sn + yd2

−
1

nD +
1

l1
o
n=1

N
1

n
, sB3d

whereNù1, y=N−1+x1/ l1, and

r =
sx2

2 + x3
2d1/2

l1
, x =

x1

l1
. sB4d

Assumingr, u1+yu, the binomial expansion of the first term
in the above equation gives
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1
Îr2 + sn + yd2

= o
p=0

` S− 1/2

p
Dr2p 1

un + yu2p+1

= o
p=1

` S− 1/2

p
Dr2p 1

un + yu2p+1 +
1

un + yu
,

sB5d

wheres −1/2
p

d stands for the binomial coefficient. We can take
the sum overn inside and obtain

hsr,x1d =
1

l1
o
p=1

` S− 1/2

p
Dr2po

n=1

`
1

un + yu2p+1

+
1

l1
o
n=1

` S 1

un + yu
−

1

n
D +

1

l1
o
n=1

N
1

n
. sB6d

Now, using the definition of the Hurwitz zeta function,

zsl,yd = o
k=0

`
1

sk + ydl , sB7d

we obtain

o
n=1

`
1

un + yu2p+1 = zs2p + 1,1 +yd. sB8d

Also the second sum in Eq.(B6) is easy to obtain. By the
definition of the digamma functionc we have

o
n=1

` S 1

un + yu
−

1

n
D = − g − cs1 + yd. sB9d

Thushsr ,x1d can be written as

hsr,x1d = −
g

l1
−

cs1 + yd
l1

+
1

l1
o
l=1

` S− 1/2

l
Dr2lzs2l + 1,1 +yd

+
1

l1
o
n=1

N
1

n
. sB10d

Using Eqs.(B2) and (B10) we obtain

Ssx1,x2,x3d =
1

l1
o
n=1

N−1 S 1
Îr2 + sn + xd2

+
1

Îr2 + sn − xd2
−

2

nD
+

1

l1
o
n=N

` S 1
Îr2 + sn + xd2

+
1

Îr2 + sn − xd2
−

2

nD
sB11d

=
1

l1
o
n=1

N−1 S 1
Îr2 + sn + xd2

+
1

Îr2 + sn − xd2D −
2g

l1

−
csN + xd + csN − xd

l1
+

1

l1
o
l=1

` S− 1/2

l
D

3r2lfzs2l + 1,N + xd + zs2l + 1,N − xdg. sB12d

Note that for Eq.(B12) to be valid, the condition is that
r, u1+yu, where y=N−1±x1/ l1. Keeping in mind thatx1
ù0 we getr, uN±x1/ l1u, which will be satisfied ifN.r
+x. Combining Eq.(B1) and Eq.(B12) gives us the result
that we set out to prove.
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